

From Reliable to Secure
Distributed Programming

Tutorial at DISC 2011

Christian Cachin*
Rachid Guerraoui

Luís Rodrigues

A play in three acts

● Abstractions and protocols for
– Reliable broadcast
– Shared memory
– Consensus

● In asynchronous distributed systems

● With processes subject to
– Crash failures
– Malicious attacks / Byzantine failures

Motivation
Introduction to Reliable and
Secure Distributed Programming

● C. Cachin, R. Guerraoui, L.
Rodrigues

● 2nd ed. of "Introduction to
Reliable Distributed Program-
ming" (Springer, 2011)

● The new content covers
Byzantine failures

Web: www.distributedprogramming.net

Distributed systems

● Basic abstractions

– Processes

– Links

– Timing models

– Cryptography

Prologue

Models and assumptions

Programming abstractions

● Sequential programming
– Array, record, list ...

● Concurrent programming
– Thread, semaphore, monitor ...

● Distributed programming
– Reliable broadcast
– Shared memory
– Consensus
– Atomic commit
– ...

Distributed programming
abstractions

● Coordination among N identical processes
– Processes are also called replicas

● Processes jointly implement application
– Need coordination

Communication abstraction

r

Processes

qp z

Layered modular architecture

● Every process consists of modules
– Modules may exist in multiple instances
– Every instance has a unique identifier

● Modules communicate through events

Component A

Component B

Events

Events

Events

Programming with events

● Modules are arranged in layers of a stack

● Asynchronous events represent communi-
cation or control flow
– Request events flow downward
– Indication events flow upward

Layer n

Layer n+1

Layer n-1

Request Indication

Request Indication

(send) (deliver)

(receive)(invoke)

Processes

● System with N processes ∏ = {p, q, r ...}

● Processes know each other

● Every process consists of a set of modules
and interacts through events

● Reactive programming model
upon event <mod, Event | att1, att2 ...> do

do something;
trigger <mod', Event' | att'1, att'2 ...>;

Process failures

● In this tutorial, we consider only:
– Crash failures

● Failed process stops executing steps
– Arbitrary or "Byzantine" failures

● Failed process behaves arbitrarily and adversarially
● May not break cryptographic primitives

Omission

Crash with Recovery

Eavesdropping

Arbitrary

Crash

Links

● Logically every process may communicate
with every other process: (a)

● Physical implementation may differ: (b)-(d)

Perfect Point-to-point Links (pl)

● Events
– Request <pl, Send | q, m>

● Sends a message m to process q
– Indication <pl, Deliver | p, m>

● Delivers a message m from sender p

● Properties
– PL1 (Reliability): If a correct sendsmessage m to

correct q, then q eventually delivers m.
– PL2 (No duplication): No message is delivered

more than once.
– PL3 (No creation): If a process delivers a message

m with sender s, then s has sent m.

Time

● Most algorithms shown here are asynchronous
– No bounds on message transmission time or

process execution time

● Some algorithms use an abstraction of time
– Failure detector
– Leadership detector

Cryptographic primitives

● Dual goals of cryptography

● Confidentiality (encryption, not relevant here)

● Integrity

– Hash functions

– Message authentication codes (MAC)

– Digital signatures

Hash functions

● Cryptographic hash function H maps inputs of
arbitrary length to a short unique tag

● Collision-freeness: No process can find distinct
values x and x' such that H(x) = H(x')

● Formally, implemented by a distributed oracle
– Maintains list L of inputs given to H so far
– upon invocation H(x)

● if x ∈ L, then append x to L
● return index of x in L

– Practical hash functions have more properties not

modeled here

Message-authentication codes

● A MAC authenticates data between two
processes (messages from sender to receiver)

● Formally, given by a distributed oracle
– Maintains set A of strings authenticated so far
– upon invocation authenticate(p, q, m) // only by p

● pick authenticator a, add (p,q,m,a) to A
● return a

– upon invocation verifyauth(q, p, m, a) // only by q
● if (p,q,m,a) ∈ A then

– return TRUE
● else

– return FALSE

– Implemented with shared secret key and hash
functions

Digital signatures

● A digital signature scheme authenticates data
with public verification

● Formally, given by a distributed oracle
– Maintains set S of strings signed so far
– upon invocation sign(p, m) // only by p

● pick signature s, add (p,m,s) to S
● return s

– upon invocation verifysig(q, m, s) // by anyone
● if (q,m,s) ∈ S then

– return TRUE
● else

– return FALSE

– Implemented from public-key cryptosystems
– Authenticity can be relayed by untrusted process

Act I

Reliable broadcast

Broadcast

● Broadcast is a basic primitive to disseminate
information
– Processes in the group send messages
– All processes should receive or "deliver" the

messages

● Reliable broadcast
– Guarantees that messages are delivered to all

processes consistently
– Agreement on the delivered messages
– No ordering among delivered messages

Best-Effort Broadcast (beb)

● Events
– Request <beb, Broadcast | m>

● Broadcasts a message m to all processes
– Indication <beb, Deliver | p, m>

● Delivers a message m from sender p

● Properties
– BEB1 (Validity): If a correct process broadcasts m,

then every correct process eventually delivers m.
– BEB2 (No duplication): No message is delivered

more than once.
– BEB3 (No creation): If a process delivers a

message m with sender s, then s has broadcast m.

● Offers no "reliability" when a process fails

Best-effort broadcast protocol

● Sender sends message m to all processes
over point-to-point links

● Not reliable

Uniform Reliable Broadcast
(urb)
● Events

– Request <urb, Broadcast | m>
● Broadcasts a message m to all processes

– Indication <urb, Deliver | p, m>
● Delivers a message m from sender p

● Properties
– RB1 (Validity) = BEB1
– RB2 (No duplication) = BEB2
– RB3 (No creation) = BEB3
– RB4 (Uniform agreement): If some process*

delivers a message m, then every correct process
eventually delivers m.

* whether process is correct or faulty!

Why uniform agreement?

● A process p delivers a message m and
crashes later; still every correct process must
deliver m.

● A regular reliable broadcast requires this only
when p is correct (= never fails).

● When p may influence application or
environment before it crashes, other
processes will also deliver message,
consistent with p.

Regular reliable broadcast

● Example of reliable but non-uniform execution
● Process p delivers m
● No other process delivers m

Majority-Ack Uniform Reliable
Broadcast
Implements urb, uses beb (N>2f)

delivered := ∅; pending := ∅; ∀m : ack[m] := ∅

upon <urb, Broadcast | m> do
pending := pending ∪ {(self,m)}
for q∈∏ do trigger <beb, Broadcast | [DATA, self, m]>

upon <beb, Deliver | p, [DATA, s, m]> do
ack[m] := ack[m] ∪ {p}
if (s,m) ∉ pending then

pending := pending ∪ {(s,m)}
for q∈∏ do

trigger <beb, Broadcast | [DATA, Self, m]>
...

Majority-Ack Uniform Reliable
Broadcast
...
upon ∃ (s,m) ∈ pending : m ∉ delivered ∧ #ack[m] > N/2 do

trigger <urb, Deliver | s, m>

● Delivers message m only after m has been
relayed by a majority of processes

● Every majority contains at least one correct
process

Byzantine reliable broadcasts

● Almost the same primitive: needs to reach
agreement on delivered messages

● Byzantine sender may cause processes to
deliver different message content for the
"same" message

● How to identify a message?

Messages not self-explaining

● Important change from model with crashes
– With crash failures, a reliable broadcast module

delivers many messages
● Messages are unique and identified only by their content

– With Byzantine processes, this is problematic
● Since messages are not ordered, and Byz. sender may

send any message, application may become confused
● Ex.: application broadcasts message [l,m], containing a

payload m and a label l; faulty sender may cause p to
deliver [l,m] first and q to deliver [l,m'] first, with m≠m'

● A Byzantine reliable broadcast instance
– Corresponds to one delivered message
– A priori declares a sender process for the instance

Authenticated communi-
cation primitives

● Recall modules in model with crash failures
– Perfect Links (pl)
– Best-effort Broadcast (beb) modules

● Authenticated versions can be defined that
tolerate network subject to attacks
– Authenticated Perfect Links (al)
– Authenticated Best-effort Broadcast (abeb)

– Implemented using cryptographic authentication
(MACs or digital signatures)

Byzantine broadcast variants

● Byzantine consistent broadcast

● Byzantine reliable broadcast

Byzantine Consistent Bc. (bcb)

● Events
– Request <bcb, Broadcast | m>

● Broadcasts a message m to all processes
– Indication <bcb, Deliver | p, m>

● Delivers a message m from sender p

● Properties
– BCB1 (Validity) = BEB1
– BCB2 (No duplication): Every correct process

delivers at most one message
– BCB3 (Integrity): If a correct process delivers m with

sender p, and p correct, then p has broadcast m.
(...)

Byzantine Consistent Bc. (bcb)
(cont.)

● (...) Properties
– BCB4 (Consistency): If a correct process delivers

message m and another correct process delivers
message m', then m=m'.

● Note: some correct process may not deliver
any message (agreement is not needed)

Auth. Echo Broadcast

Implements bcb, uses abeb, with sender s (N>3f) [ST87]

upon <bcb, Broadcast | m> do
trigger <abeb, Broadcast | [SEND, m]>

upon <abeb, Deliver | s, [SEND, m]> do
trigger <abeb, Broadcast | [ECHO, m]>

upon <abeb, Deliver | p, [ECHO, m]> do
echo[p] := m
if ∃m : #{p | echo[p]=m} > (N+f)/2 then

trigger <bcb, Deliver | s, m>

// code to prevent duplicate execution is omitted

Example

● Faulty sender p
● Processes q and s bcb-deliver the message
● Process r does not deliver any message
● O(n2) messages; O(n2 |m|) communication

Using Byzantine quorums

● System of N > 3f processes, f are faulty

● Every subset with size strictly larger than
(N+f)/2 processes is a Byzantine quorum (B.Q.)
– Every B.Q. has more than (N-f)/2 correct processes
– Two distinct B.Q. together contain more than N-f

correct pr.
– Thus, every two B.Q. overlap in some correct pr.

● This correct process has abeb-broadcast the same message
[ECHO, m] to all processes

● The collection of all Byzantine quorums is a
quorum system

Byzantine Reliable Bc. (brb)

● Events
– Request <brb, Broadcast | m>
– Indication <brb, Deliver | p, m>

● Properties
– BRB1 (Validity) = BCB1
– BRB2 (No duplication) = BCB2
– BRB3 (Integrity) = BCB3
– BRB4 (Consistency) = BCB4
– BRB5 (Totality): If some correct process delivers a

message, then every correct process eventually
delivers a message

● Either all or none of the correct processes
deliver the message

Auth. Double-Echo Broadcast

Implements brb, uses abeb, with sender s (N>3f) [Bra87]

sentready := FALSE

upon <brb, Broadcast | m> do
trigger <abeb, Broadcast | [SEND, m]>

upon <abeb, Deliver | s, [SEND, m]> do
trigger <abeb, Broadcast | [ECHO, m]>

upon <abeb, Deliver | p, [ECHO, m]> do
echo[p] := m
if ∃m : #{p | echo[p]=m} > (N+f)/2 ∧ ¬sentready then

sentready := TRUE
trigger <abeb, Broadcast | [READY, m]>

...

Auth. Double-Echo Broadcast

...
upon <abeb, Deliver | p, [READY, m]> do

ready[p] := m
if ∃m : #{p | ready[p]=m} > f ∧ ¬sentready then

// amplification of READY messages
sentready := TRUE
trigger <abeb, Broadcast | [READY, m]>

else if ∃m : #{p | ready[p]=m} > (N+f)/2 then
trigger <brb, Deliver| s, m>

// again, some code to prevent duplicate execution is omitted

Example

● Amplification from f+1 to 2f+1 READY
messages ensures totality
– All or none of the correct processes deliver message

● O(n2) messages; O(n2 |m|) communication

Byzantine Broadcast Channel

● Combines many one-message broadcast
instances

● Every message delivered together with a
unique label
– Consistency and totality hold for each label

● Implemented from multiple "parallel"
instances of Byzantine broadcasts

● Two variants
– Consistent Channel
– Reliable Channel

Act II

Shared memory

Operations on shared memory

● Memory abstraction is a register

● Two operations: read and write

● Operations restricted to certain processes
– 1 writer or N writers
– 1 reader or N readers

– (W,R)-register has W writers and R readers

Concurrent operations

● Operations take time, defined by two events
at a process: invocation and completion

● Write(r, v) ok→
– Writes value v to register instance r

● Read(r) v→
– Reads from register instance r and returns value v

● Operation o precedes o' whenever completion
of o occurs before invocation of o'

● Otherwise, o and o' are concurrent

Semantics of memory ops.

Safe: Every read not concurrent with a write returns the
most recently written value.

Regular: Safe & any read concurrent with a write
returns either the most recently written value or the
concurrently written value: process s may read x or u.

Atomic: Regular & all read and write operations occur
atomically (= linearizable): process s must read u.

write(r,x) ok→
p

q
read(r) x→

s

write(r,u) ok→

read(r) u→

read(r) u→ read(r) → ?

Linearizability

● Every operations appears to execute
atomically at its linearization point
which lies in real time between the invocation
and the completion

write(r,x) ok→
p

q
read(r) x→

s

write(r,u) ok→

read(r) u→

read(r) u→ read(r) → u

(1,N) Regular Register (onrr)

● Events
– Request <onrr, Read>

● Invokes a read operation on the register
– Request <onrr, Write | v>

● Invokes a write operation with value v
– Indication <onrr, ReadReturn | v>

● Completes a read operation, returning value v
– Indication <onrr, WriteReturn>

● Completes a write operation

● Properties
– ONRR1 (Liveness): If a correct process invokes an

operation, then the operation eventually completes.
– ONRR1 (Validity): A read returns the last value

written or the* value written concurrently.
*Only one process can possibly write.

Implementations of registers

● From other (simpler, unreliable) registers
– Multi-valued from binary registers
– (1,N) from (1,1) registers
– Regular registers from safe registers
– Atomic registers from regular registers
– ...

● From replicated (unreliable) processes
– Considered here
– Replica processes may fail

● Crash failures
● Byzantine failures

Client-server model

● Clients and servers are usually separate
● For simplicity, we model them all as one

group of N processes
– Processes have dual role as clients and servers

Communication abstraction

rN server
processes

p

c1

z

c1

q

Client
processes

Majority-Voting Reg. Register

Implements onrr, uses pl, beb (N > 2f)

(ts,val) := (0,); wts := 0; rid := 0

upon <onrr, Write | v> do
wts := wts + 1
acklist := []N
trigger <beb, Broadcast | [WRITE, wts, v]>

upon <beb, Deliver | p, [WRITE, ts', v']> do
if ts' > ts then

(ts, val) := (ts', v')
trigger <pl, Send | p, [ACK, ts']>

upon <pl, Deliver | q, [ACK, wts]> do
acklist[q] := 1
if #(acklist) > N/2 then

trigger <onrr, WriteReturn>
...

Majority-Voting Reg. Register

...
upon <onrr, Read> do

rid := rid + 1
readlist := []N
trigger <beb, Broadcast | [READ, rid]>

upon <beb, Deliver | p, [READ, r]> do
trigger <pl, Send | p, [VALUE, r, ts, val]>

upon <pl, Deliver | q, [VALUE, rid, ts', v']> do
readlist[q] := (ts', v')
if #(readlist) > N/2 then

v := highestval(readlist) // value with highest ts
trigger <onrr, ReadReturn | v>

● Validity: every two operations access one
common correct process

Registers in Byzantine model

● Up to f processes may be (Byzantine) faulty,
including reader

● Writer process is always correct

● Specification of
– (1,N) safe Byzantine register (bonsr) and
– (1,N) regular Byzantine register (bonrr)

directly follows from (1,N) regular register

Implementations

● Algorithms must eliminate wrong values
returned by Byzantine processes

● Two approaches for elimination
– Masking by sufficiently many correct values

→ Alg. "Masking Quorum" for Byzantine
safe register

– Authentication of correct values with digital
signatures

→ Alg. "Authenticated-Data" for Byzantine
regular register

Byzantine Masking Quorum

Implements bonsr, uses al, abeb (N > 4f), writer is w

(ts,val) := (0,); wts := 0; rid := 0 // Differences are in this color

upon <bonsr, Write | v> do
wts := wts + 1
acklist := []N
trigger <abeb, Broadcast | [WRITE, wts, v]>

upon <abeb, Deliver | w, [WRITE, ts', v']> do
if ts' > ts then

(ts, val) := (ts', v')
trigger <al, Send | w, [ACK, ts']>

upon <al, Deliver | q, [ACK, wts]> do
acklist[q] := 1
if #(acklist) > (N+2f)/2 then

trigger <bonsr, WriteReturn>
...

Byzantine Masking Quorum
...
upon <bonsr, Read> do

rid := rid + 1
readlist := []N
trigger <abeb, Broadcast | [READ, rid]>

upon <abeb, Deliver | p, [READ, r]> do
trigger <al, Send | p, [VALUE, r, ts, val]>

upon <al, Deliver | q, [VALUE, rid, ts', v']> do
readlist[q] := (ts', v')
if #(readlist) > (N+2f)/2 then

v := byz-highestval(readlist) // filter and extract value
trigger <bonsrr, ReadReturn | v>

● byz-highestval()
– eliminates all values occurring f or fewer times
– returns survivor value with highest timestamp

-- or -- special value if no such value exists

Comments

● Alg. Byzantine Masking Quorum may return 
– Implements safe register on domain with { }

● Without concurrent write operation
– Last write op. has touched more than (N+2f)/2 pr.

● Among them, more than (N+2f)/2 - f are correct
● Less than (N-2f)/2 correct processes are untouched

– Read op. obtains value from more than (N+2f)/2 pr.
● Up to f may be from Byzantine pr.
● Less than (N-2f)/2 are from untouched correct pr.
● Strictly more than f are from correct pr. and contain last-

written timestamp/value pair

Auth.-Data Byzantine Quorum

Implements bonrr, uses al, abeb, signatures (N > 3f), writer is w

(ts,val, s) := (0, , ); wts := 0; rid := 0 // Differences are in this color

upon <bonrr, Write | v> do
wts := wts + 1; s := sign(w, WRITE||w||wts||v)
acklist := []N
trigger <abeb, Broadcast | [WRITE, wts, v, s]>

upon <abeb, Deliver | w, [WRITE, ts', v', s']> do
if ts' > ts then

(ts, val, s) := (ts', v', s')
trigger <al, Send | w, [ACK, ts']>

upon <al, Deliver | q, [ACK, wts]> do
acklist[q] := 1
if #(acklist) > (N+f)/2 then

trigger <bonsr, WriteReturn>
...

Auth.-Data Byzantine Quorum

...
upon <bonrr, Read> do

rid := rid + 1
readlist := []N
trigger <abeb, Broadcast | [READ, rid]>

upon <abeb, Deliver | p, [READ, r]> do
trigger <al, Send | p, [VALUE, r, ts, val, s]>

upon <al, Deliver | q, [VALUE, rid, ts', v', s']> do
if verifysig(w, WRITE||w||ts'||v', s') then

readlist[q] := (ts', v')
if #(readlist) > (N+f)/2 then

v := highestval(readlist) // value with highest ts
trigger <bonrr, ReadReturn | v>

Comments

● Alg. Authenticated-Data Byz. Quorum uses
– Digital signatures issued by writer
– Byzantine quorums

● Otherwise, exactly the same as the Majority
Quorum algorithm
– Signatures authenticate the value
– Signatures bind value to timestamp

Act III

Consensus

Consensus

● Processes propose values and have to agree
on one decision value among the proposed
values

● Consensus is a key abstraction for solving
many other problems in fault-tolerant
distributed systems
– Total-order broadcast
– Non-blocking atomic commit
– Replicated services
– ...

Uniform Consensus (uc)

● Events
– Request <uc, Propose | v>

● Proposes value v for consensus
– Indication <uc, Decide | v>

● Outputs a decided value v of consensus

● Properties
– UC1 (Termination): Every correct process

eventually decides.
– UC2 (Validity): Any decided value has been

proposed by some process.
– UC3 (Integrity): No process decides twice.
– UC4 (Uniform Agreement): No two processes*

decide differently.

* whether correct or faulty

Weak Byzantine Consensus
(wbc)
● Events

– Request <wbc, Propose | v>
● Proposes value v for consensus

– Indication <wbc, Decide | v>
● Outputs a decided value v of consensus

● Properties
– WBC1 (Termination) = UC1
– WBC2 (Weak Validity): Suppose all processes are

correct: if all propose v, then a process may only
decide v; if a process decides v, then v was
proposed by some process.

– WBC3 (Integrity): No correct process decides twice.
– WBC4 (Agreement): No two correct processes

decide differently.

Implementing consensus

● In asynchronous system with processes prone
to crash and Byzantine failures, deterministic
algorithms cannot implement consensus [FLP].

● We use a timing assumption, encapsulated as a
leader detection oracle 
–  periodically designates a trusted leader
–  is not perfect, may make mistakes

● Variations of can be implemented in partially 
synchronous systems
– With crash or Byzantine failures

Leader-driven consensus

● Most important paradigm for efficient imple-
mentations of consensus

● Introduced in
– Viewstamped replication [OL88]
– Paxos [L96]
– PBFT [CL02]

(these formulate it as total-order broadcast)

● Used in many cloud-serving platforms today

● Modular presentation of consensus algorithm
in 3 steps

Leader-driven consensus

● Leader-driven consensus invokes
– One instance of Epoch-Change (invokes Omega)
– Multiple instances of Epoch Consensus

● Identified by the epoch number and a designated leader

Leader-driven consensus

Epoch-Change

E
p

o
ch

 C
o
n

s .
(2

,L
2

)

Eventual Leader
Detector  E

p
o
ch

 C
o
n

s .
(1

,L
1

)

E
p

o
ch

 C
o
n

s .
(3

,L
3

)

Preview - Step 1

● Define abstract primitives for
– Epoch-Change
– Epoch Consensus

● Abstractions are valid in both models

● Leader-driven algorithm for Uniform
Consensus (crash faults) and Weak Byzantine
Consensus (Byzantine faults)
– Using Epoch-Change and Epoch Consensus

abstractions

Preview - Step 2

● Instantiate primitives in model with crash
failures
– According to Viewstamped Replication/Paxos

● Implement Epoch-Change

● Implement Epoch Consensus

Preview - Step 3

● Instantiate primitives in model with Byzantine
failures
– According to PBFT

● Implement Epoch-Change

● Implement Epoch Consensus

Step 1

Implement consensus using
leader-driven algorithm

Eventual Leader Detector ()

● Events
– Indication < , Trust | p>

● Indicates that process p is trusted to be leader

● Properties
– ELD1 (Eventual accuracy): Eventually every correct

process trusts some correct process.
– ELD2 (Eventual agreement): Eventually no two

correct processes trust a different process.

● The trusted leader may change over time,
different leaders may be elected, only
eventually every process follows a "good"
leader.

Epoch-Change (ec)

● Events
– Request <ec, StartEpoch | ts, L>

● Starts epoch (ts,L), timestamp ts and leader L

● Properties
– EC1 (Monotonicity): If a correct process starts epoch

(ts,L) and later starts epoch (ts',L'), then ts' > ts.
– EC2 (Consistency): If a correct process starts epoch

(ts,L) and another correct process starts epoch
(ts,L'), then L = L'.

– EC3 (Eventual Leadership): Eventually every correct
process starts no further epoch; moreover, every
correct process starts the same last epoch (ts,L),
where L is a correct process.

Epoch Consensus (ep)

● Associated with timestamp ts and leader L
(globally known)

● Events
– Request <ep, Propose | v>

● Proposes v for epoch consensus (executed by leader only)
– Request <ep, Abort>

● Aborts this epoch consensus
– Indication <ep, Decide | v>

● Outputs decided value v for epoch consensus
– Indication <ep, Aborted | s>

● Signals that this epoch consensus has completed the abort
and returns state s

Epoch Consensus (ep)

● Properties
– EP1 (Validity): If a correct process ep-decides v,

then v was proposed by the leader of some epoch
consensus (ts',L) with ts' ≤ ts.

– EP2 (Uniform Agreement): No two [correct*]
processes ep-decide differently.

– EP3 (Integrity): A correct process ep-decides at most
once.

– EP4 (Lock-in): If a process ep-decides v in epoch ts'
< ts, no process ep-decides a value different from v.

– EP5 (Termination): If the leader L is correct, has ep-
proposed a value and no process aborts, then every
correct process eventually ep-decides.

(...) * for Byzantine epoch consensus

Epoch Consensus (ep)

● (...) Properties
– EP6 (Abort behavior): When a correct process

aborts, then it eventually completes the abort; plus,
a correct process completes an aborts only if it has
been aborted before.

● Every process must run a well-formed
sequence of epoch consensus instances:
– Only one instance of epoch consensus at a time
– Associated timestamps monotonically increasing
– Give state from previous (aborted) instance to next

instance

Leader-driven consensus impl.

Implements c* (either uc or wbc), uses ec, ep (multiple instances)

val := ; proposed :=  FALSE; decided := FALSE
(ets,L) := (0,L0); (newts,newL) := (0,)
Init. Epoch Consensus inst. ep.0 with timestamp 0 and leader L0

upon <c*, Propose | v> do
val := v

upon <ec, StartEpoch | newts', newL'> do
(newts,newL) := (newts',newL')
trigger <ep.ets, Abort>

upon <ep.ets, Aborted | s> do
(ets,L) := (newts,newL)
proposed := FALSE
Init. Epoch Consensus inst. ep.ets with timestamp ets, leader L,

and state s

Leader-driven consensus impl.

(...)

upon L = self ∧ val ≠  ∧ ¬proposed do
proposed := TRUE
trigger <ep.ets, Propose | val>

upon <ep.ets, Decide | v> do
if ¬decided then

decided := TRUE
trigger <c*, Decide | v>

Ex.

● Every process (p, q, r, s) uc-proposes a value
● Epoch 6 has leader q

– q ep-proposes y, but only r receives it before epoch aborts
– r now has state (6,x)

● Epoch 8 has leader s
– s ep-proposes z, proc. p, q, s receive it
– only p ep-decides(z); then s crashes

● Epoch 11 has leader r, and ep-decides(z)

Correctness

● Termination (UC1 / WBC1)
– From EC3 (eventual leadership), EP5 (termination)

and algorithm
● Validity (UC2) / Weak Validity (WBC2)

– From EP1 (validity) and algorithm
● Integrity (UC3)

– Immediate from algorithm
● Uniform Agreement (UC4 / WBC4)

– From algorithm and EP2 (agreement) and EP4
(lock-in)

Step 2

Implement epoch-change and
epoch consensus in crash-

failure model

Implementing epoch-change

● Use eventual leader detector ()

● Maintain current trusted leader and timestamp

● When  indicates a different leader is trusted
– Increment timestamp
– Broadcast a NEWEPOCH message (with leader and

timestamp)

● When delivering a NEWEPOCH message
– Trigger start of new epoch

(Only a sketch; details omitted)

Implementing epoch consensus

● Read/write epoch consensus algorithm
– Analogous to replicated implementation of a shared

single-writer register

● State consists of a timestamp/value pair

● Leader reads state and looks for a value
– Chooses value with highest timestamp
– If no value found, takes value from its ep-proposal
– Writes the chosen value

● Decide once a quorum of processes (> N/2)
accept the written value

Read/write epoch consensus
Implements ep, uses pl, beb (N > 2f), with ts. ets and leader L

upon <ep, Init | (valts,val)> do
tmpval := ; states :=  [] N; accepted := 0

upon <ep, Propose | v> do
tmpval := v
trigger <beb, Broadcast | [READ]>

upon <beb, Deliver | L, [READ]> do
trigger <pl, Send | L, [STATE, valts, val]>

upon <pl, Deliver | q, [STATE, ts, v]> do
states[q] := (ts,v)

upon #(states) > N/2 do
(ts,v) := highest(states); states := [] N

if v ≠  then tmpval := v
trigger <beb, Broadcast | [WRITE, tmpval]>

Read/write epoch consensus

(...)

upon <beb, Deliver | L, [WRITE, v]> do
(valts,val) := (ets,v)
trigger <pl, Send | L, [ACCEPT]>

upon <pl, Deliver | q, [ACCEPT]> do
accepted := accepted + 1

upon accepted > N/2 do
accepted := 0
trigger <beb, Broadcast | [DECIDED, tmpval]>

upon <pl, Deliver | L, [DECIDED, v]> do
trigger <ep, Decide | v>

upon <ep, Abort> do
trigger <ep, Aborted | (valts,val)>

Correctness (1)

● Validity (EP1)
– The ep-decided value was written by L
– If any STATE msg. contains a value, L writes this

● This value has been written by some leader
– Otherwise, L writes its own ep-proposed value

● Uniform Agreement (EP2)
– Immediate from DECIDED msg. in algorithm

● Integrity (EP3)
– Immediate from algorithm

● Lock-in (EP4)
– A write-quorum (> N/2) stored v before sending

the ACCEPT msg. in previous epoch ts' < ts
– Processes passed it in state to subsequent epochs
– Then, L reads v from at least one STATE msg. in

read-quorum (> N/2)

Correctness (2)

● Termination (EP5)
– If leader L is correct, then every process ep-

decides
● Abort behavior (EP6)

– Immediate from algorithm

Step 3

Implement epoch-change and
epoch consensus in Byzantine-

failure model

Implementing Byzantine
epoch-change
● Use Byzantine eventual leader detector (bld)

– bld allows application to complain when no progress

● Maintain current trusted leader and timestamp

● When bld indicates a different leader is trusted
– Increment timestamp
– Derive leader from timestamp (deterministically)
– Broadcast a NEWEPOCH message (with timestamp)

● When delivering > f NEWEPOCH messages
– Trigger start of new epoch

(Only a sketch; details omitted)

Implementing Byzantine epoch
consensus (1)
● Byzantine read/write epoch consensus alg.

– Analogous to replicated implementation of a Byz.
shared single-writer register

● State consists of timestamp/value pair and set
of "previously" written values

● Leader should read state of all processes and
determine value to write
– But cannot trust single leader
– Thus, all processes read state and determine value

● Encapsulated by a conditional collect primitive

(...)

Implementing Byzantine epoch
consensus (2)

● Processes choose value with highest timestamp
– If no value found, only then leader is free to take the

value from its ep-proposal

● All processes write the chosen value
– Broadcast WRITE message to all

● When receiving WRITE msg. with value v from
> (N+f)/2 processes, then store v
– Broadcast ACCEPT msg. message to all

● When receiving ACCEPT msg. with v from
> (N+f)/2 processes, then ep-decide

Conditional Collect (cc)
● Parameterized by a predicate C and leader L

– Leader L will also be the leader of the epoch

● Events
– Request <cc, Input | m>

● Inputs message m
– Indication <cc, Collected | M>

● Outputs vector M of collected messages or UNDEFINED

● Properties
– CC1 (Consistency): If L is correct, every correct pr.

collects the same M, which contains at least N-f
messages different from UNDEFINED.

– CC2 (Integrity): If a correct pr. collects M with M[p]
≠ UNDEFINED and p is correct, then p has input m.
(...)

Conditional Collect (cc)
● (... Properties)

– CC3 (Termination): If L is correct and all correct pr.
input messages such that they satisfy C, then every
correct process eventually collects M s.t. C(M).

● Note
– Every process inputs a message
– Output is vector of such messages, one per process
– If L correct, then output M satisfies the predicate

● Otherwise, may not terminate

Byz. read/write epoch cons. (1)
Implements ep, uses al, abeb, cc (N > 3f), with ts. ets and leader L

upon <ep, Init | (valts,val,ws)> do
written := [] N; accepted := [] N

upon <ep, Propose | v> do
if val =  then val := v
trigger <abeb, Broadcast | [READ]>

upon <abeb, Deliver | L, [READ]> do
trigger <cc, Input | [STATE, valts, val, ws]>

upon <cc, Collected | S> do
// note, for all p : S[p] = [STATE, ts, v, ws] or UNDEFINED
tmpval := 
if ∃ts ≥ 0, v ≠ from S :  binds(ts,v,S) then tmpval := v
else if ∃v ≠ :  unbound(S) ∧ v ∈ S[L] then tmpval := v
if tmpval =  then halt
(...)

Byz. read/write epoch cons. (2)

(... upon <cc, Collected | S> do)
if ∃ts : (ts,tmpval) ∈ ws then ws := ws ∖ {(ts,tmpval)}
ws := ws ∪ {(ets,tmpval)}
trigger <abeb, Broadcast | [WRITE, tmpval]>

upon <abeb, Deliver | p, [WRITE, v]> do
written[p] := v
if v ∃ : #{p|written[p]=v} > (N+f)/2 then

(valts,val) := (ets,v)
written := [] N

trigger <abeb, Broadcast | [ACCEPT, val]>

upon <abeb, Deliver | q, [ACCEPT, v]> do
accepted[p] := v
if v ∃ : #{p|accepted[p]=v} > (N+f)/2 then

written := [] N

trigger <ep, Decide | v>

Byz. read/write epoch cons. (3)

● Predicate binds(ts,v,S):
– Whether (ts,v) is confirmed by > (N+f)/2 entries in

S to be value associated to highest timestamp,
and

– Value v has not been invented out of thin air
● Hence, processes write this value again

● Predicate unbound(S):
– Evidence that no value can be bound by S

● Hence, processes write value of the leader

● Predicate sound(S) for cc:
– ∃(ts,v) such that binds(ts,v,S) ∨ unbound(S)

Correctness (1)
● Validity (EP1)

– The ep-decided value v was written in the epoch
– Either collected vector S satisfies bound(ts,v,S)

● Then v has been written in an "earlier" epoch
– Otherwise, take ep-proposed value of L

● Uniform Agreement (EP2)
– Immediate from quorum of ACCEPT msgs.

● Integrity (EP3)
– Immediate from algorithm

● Lock-in (EP4)
– A write-quorum (> (N+f)/2) stored v before

sending an ACCEPT msg. in previous epoch ts' < ts
– Processes passed it in state to subsequent epochs
– Then, conditional collect determines from STATE

msgs. in a quorum (> (N+f)/2) that such v exists

Correctness (2)
● Termination (EP5)

– If leader L is correct, then every process ep-
decides

● Given termination of conditional collect (CC3)
● Same as termination of Byz. reliable broadcast

● Abort behavior (EP6)
– Immediate from algorithm (omitted)

Summary

● Same leader-driven consensus algorithm with
crash failures and Byzantine failures
– Using abstract primitives of epoch-change and

epoch consensus

● Primitives implemented in crash model
– Paxos consensus algorithm

● Primitives implemented in Byzantine model
– PBFT consensus algorithm

Coda

Wrap-up

● Distributed programming defines abstractions
of
– Reliable broadcast
– Shared memory
– Consensus

● Implementations in distributed systems

● By group of processes, which are subject to
– Crash failures
– Attacks/Byzantine failures

For everything else, see the
book.

www.distributedprogramming.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

