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A play in three acts

● Abstractions and protocols for
– Reliable broadcast
– Shared memory
– Consensus

● In asynchronous distributed systems

● With processes subject to
– Crash failures
– Malicious attacks / Byzantine failures



Motivation
Introduction to Reliable and 
Secure Distributed Programming

● C. Cachin, R. Guerraoui, L. 
Rodrigues

● 2nd ed. of "Introduction to 
Reliable Distributed Program-
ming" (Springer, 2011)

● The new content covers 
Byzantine failures

Web: www.distributedprogramming.net



Distributed systems

● Basic abstractions

– Processes

– Links

– Timing models

– Cryptography



Prologue

Models and assumptions



Programming abstractions

● Sequential programming
– Array, record, list ...

● Concurrent programming
– Thread, semaphore, monitor ...

● Distributed programming
– Reliable broadcast
– Shared memory
– Consensus
– Atomic commit
– ...



Distributed programming 
abstractions

● Coordination among N identical processes
– Processes are also called replicas

● Processes jointly implement application
– Need coordination

Communication abstraction

r

Processes

qp z



Layered modular architecture

● Every process consists of modules
– Modules may exist in multiple instances
– Every instance has a unique identifier

● Modules communicate through events

Component A

Component B

Events

Events

Events



Programming with events

● Modules are arranged in layers of a stack

● Asynchronous events represent communi-
cation or control flow
– Request events flow downward
– Indication events flow upward

Layer n

Layer n+1

Layer n-1

Request Indication

Request Indication

(send) (deliver)

(receive)(invoke)



Processes

● System with N processes ∏ = {p, q, r ...}

● Processes know each other

● Every process consists of a set of modules 
and interacts through events

● Reactive programming model
upon event <mod, Event | att1, att2 ...> do

do something;
trigger <mod', Event' | att'1, att'2 ...>;



Process failures

● In this tutorial, we consider only:
– Crash failures

● Failed process stops executing steps
– Arbitrary or "Byzantine" failures

● Failed process behaves arbitrarily and adversarially
● May not break cryptographic primitives

Omission

Crash with Recovery

Eavesdropping

Arbitrary

Crash



Links

● Logically every process may communicate 
with every other process: (a)

● Physical implementation may differ: (b)-(d)



Perfect Point-to-point Links (pl)

● Events
– Request <pl, Send | q, m>

● Sends a message m to process q
– Indication <pl, Deliver | p, m>

● Delivers a message m from sender p

● Properties
– PL1 (Reliability): If a correct sendsmessage m to 

correct q, then q eventually delivers m.
– PL2 (No duplication): No message is delivered 

more than once.
– PL3 (No creation): If a process delivers a message 

m with sender s, then s has sent m.



Time

● Most algorithms shown here are asynchronous
– No bounds on message transmission time or 

process execution time

● Some algorithms use an abstraction of time
– Failure detector
– Leadership detector



Cryptographic primitives

● Dual goals of cryptography

● Confidentiality (encryption, not relevant here)

● Integrity

– Hash functions

– Message authentication codes (MAC)

– Digital signatures



Hash functions

● Cryptographic hash function H maps inputs of 
arbitrary length to a short unique tag

● Collision-freeness: No process can find distinct 
values x and x' such that H(x) = H(x')

● Formally, implemented by a distributed oracle
– Maintains list L of inputs given to H so far
– upon invocation H(x)

● if x ∈ L, then append x to L 
● return index of x in L

 
– Practical hash functions have more properties not 

modeled here



Message-authentication codes

● A MAC authenticates data between two 
processes (messages from sender to receiver)

● Formally, given by a distributed oracle
– Maintains set A of strings authenticated so far
– upon invocation authenticate(p, q, m) // only by p

● pick authenticator a, add (p,q,m,a) to A 
● return a 

– upon invocation verifyauth(q, p, m, a) // only by q
● if (p,q,m,a) ∈ A then

– return TRUE
● else

– return FALSE 
 

– Implemented with shared secret key and hash 
functions



Digital signatures

● A digital signature scheme authenticates data 
with public verification

● Formally, given by a distributed oracle
– Maintains set S of strings signed so far
– upon invocation sign(p, m) // only by p

● pick signature s, add (p,m,s) to S 
● return s 

– upon invocation verifysig(q, m, s) // by anyone
● if (q,m,s) ∈ S then

– return TRUE
● else

– return FALSE 
 

– Implemented from public-key cryptosystems
– Authenticity can be relayed by untrusted process 



Act I

Reliable broadcast



Broadcast

● Broadcast is a basic primitive to disseminate 
information
– Processes in the group send messages
– All processes should receive or "deliver" the 

messages

● Reliable broadcast
– Guarantees that messages are delivered to all 

processes consistently
– Agreement on the delivered messages
– No ordering among delivered messages



Best-Effort Broadcast (beb)

● Events
– Request <beb, Broadcast | m>

● Broadcasts a message m to all processes
– Indication <beb, Deliver | p, m>

● Delivers a message m from sender p

● Properties
– BEB1 (Validity): If a correct process broadcasts m, 

then every correct process eventually delivers m.
– BEB2 (No duplication): No message is delivered 

more than once.
– BEB3 (No creation): If a process delivers a 

message m with sender s, then s has broadcast m.

● Offers no "reliability" when a process fails



Best-effort broadcast protocol

● Sender sends message m to all processes 
over point-to-point links

● Not reliable



Uniform Reliable Broadcast 
(urb)
● Events

– Request <urb, Broadcast | m>
● Broadcasts a message m to all processes

– Indication <urb, Deliver | p, m>
● Delivers a message m from sender p

● Properties
– RB1 (Validity) = BEB1
– RB2 (No duplication) = BEB2
– RB3 (No creation) = BEB3
– RB4 (Uniform agreement): If some process* 

delivers a message m, then every correct process 
eventually delivers m.

* whether process is correct or faulty!



Why uniform agreement?

● A process p delivers a message m and 
crashes later; still every correct process must 
deliver m.

● A regular reliable broadcast requires this only 
when p is correct (= never fails).

● When p may influence application or 
environment before it crashes, other 
processes will also deliver message, 
consistent with p.



Regular reliable broadcast

● Example of reliable but non-uniform execution
● Process p delivers m
● No other process delivers m 



Majority-Ack Uniform Reliable 
Broadcast
Implements urb, uses beb (N>2f)

delivered := ∅; pending := ∅; ∀m : ack[m] := ∅

upon <urb, Broadcast | m> do
pending := pending ∪ {(self,m)}
for q∈∏ do trigger <beb, Broadcast | [DATA, self, m]>

upon <beb, Deliver | p, [DATA, s, m]> do
ack[m] := ack[m] ∪ {p}
if (s,m) ∉ pending then

pending := pending ∪ {(s,m)}
for q∈∏ do

trigger <beb, Broadcast | [DATA, Self, m]>
...



Majority-Ack Uniform Reliable 
Broadcast
...
upon ∃ (s,m) ∈ pending : m ∉ delivered ∧ #ack[m] > N/2 do

trigger <urb, Deliver | s, m>

● Delivers message m only after m has been 
relayed by a majority of processes

● Every majority contains at least one correct 
process



Byzantine reliable broadcasts

● Almost the same primitive: needs to reach 
agreement on delivered messages

● Byzantine sender may cause processes to 
deliver different message content for the 
"same" message

● How to identify a message?



Messages not self-explaining

● Important change from model with crashes 
– With crash failures, a reliable broadcast module  

delivers many messages
● Messages are unique and identified only by their content

– With Byzantine processes, this is problematic
● Since messages are not ordered, and Byz. sender may 

send any message, application may become confused
● Ex.: application broadcasts message [l,m], containing a 

payload m and a label l; faulty sender may cause p to 
deliver [l,m] first and q to deliver [l,m'] first, with m≠m'

● A Byzantine reliable broadcast instance
– Corresponds to one delivered message
– A priori declares a sender process for the instance



Authenticated communi-
cation primitives

● Recall modules in model with crash failures
– Perfect Links (pl)
– Best-effort Broadcast (beb) modules

● Authenticated versions can be defined that 
tolerate network subject to attacks
– Authenticated Perfect Links (al)
– Authenticated Best-effort Broadcast (abeb)

– Implemented using cryptographic authentication 
(MACs or digital signatures)



Byzantine broadcast variants

● Byzantine consistent broadcast

● Byzantine reliable broadcast



Byzantine Consistent Bc. (bcb)

● Events
– Request <bcb, Broadcast | m>

● Broadcasts a message m to all processes
– Indication <bcb, Deliver | p, m>

● Delivers a message m from sender p

● Properties
– BCB1 (Validity) = BEB1
– BCB2 (No duplication): Every correct process 

delivers at most one message
– BCB3 (Integrity): If a correct process delivers m with 

sender p, and p correct, then p has broadcast m.
(...)



Byzantine Consistent Bc. (bcb)
(cont.)

● (...) Properties
– BCB4 (Consistency): If a correct process delivers 

message m and another correct process delivers 
message m', then m=m'.

● Note: some correct process may not deliver 
any message (agreement is not needed)



Auth. Echo Broadcast

Implements bcb, uses abeb, with sender s (N>3f) [ST87]

upon <bcb, Broadcast | m> do
trigger <abeb, Broadcast | [SEND, m]>

upon <abeb, Deliver | s, [SEND, m]> do
trigger <abeb, Broadcast | [ECHO, m]>

upon <abeb, Deliver | p, [ECHO, m]> do
echo[p] := m
if ∃m : #{p | echo[p]=m} > (N+f)/2 then

trigger <bcb, Deliver | s, m>

// code to prevent duplicate execution is omitted



Example

● Faulty sender p
● Processes q and s bcb-deliver the message
● Process r does not deliver any message
● O(n2) messages; O(n2 |m|) communication



Using Byzantine quorums

● System of N > 3f processes, f are faulty

● Every subset with size strictly larger than 
(N+f)/2 processes is a Byzantine quorum (B.Q.)
– Every B.Q. has more than (N-f)/2 correct processes
– Two distinct B.Q. together contain more than N-f 

correct pr.
– Thus, every two B.Q. overlap in some correct pr.

● This correct process has abeb-broadcast the same message 
[ECHO, m] to all processes

● The collection of all Byzantine quorums is a 
quorum system



Byzantine Reliable Bc. (brb)

● Events
– Request <brb, Broadcast | m>
– Indication <brb, Deliver | p, m>

● Properties
– BRB1 (Validity) = BCB1
– BRB2 (No duplication) = BCB2
– BRB3 (Integrity) = BCB3
– BRB4 (Consistency) = BCB4
– BRB5 (Totality): If some correct process delivers a 

message, then every correct process eventually 
delivers a message

● Either all or none of the correct processes 
deliver the message



Auth. Double-Echo Broadcast

Implements brb, uses abeb, with sender s (N>3f) [Bra87]

sentready := FALSE

upon <brb, Broadcast | m> do
trigger <abeb, Broadcast | [SEND, m]>

upon <abeb, Deliver | s, [SEND, m]> do
trigger <abeb, Broadcast | [ECHO, m]>

upon <abeb, Deliver | p, [ECHO, m]> do
echo[p] := m
if ∃m : #{p | echo[p]=m} > (N+f)/2  ∧ ¬sentready then

sentready := TRUE
trigger <abeb, Broadcast | [READY, m]>

...



Auth. Double-Echo Broadcast

...
upon <abeb, Deliver | p, [READY, m]> do

ready[p] := m
if ∃m : #{p | ready[p]=m} > f ∧ ¬sentready then

// amplification of READY messages
sentready := TRUE
trigger <abeb, Broadcast | [READY, m]>

else if ∃m : #{p | ready[p]=m} > (N+f)/2 then
trigger <brb, Deliver| s, m>

// again, some code to prevent duplicate execution is omitted



Example

● Amplification from f+1 to 2f+1 READY 
messages ensures totality
– All or none of the correct processes deliver message

● O(n2) messages; O(n2 |m|) communication



Byzantine Broadcast Channel

● Combines many one-message broadcast 
instances

● Every message delivered together with a 
unique label
– Consistency and totality hold for each label

● Implemented from multiple "parallel" 
instances of Byzantine broadcasts

● Two variants
– Consistent Channel
– Reliable Channel



Act II

Shared memory



Operations on shared memory

● Memory abstraction is a register

● Two operations: read and write

● Operations restricted to certain processes
– 1 writer or N writers
– 1 reader or N readers

– (W,R)-register has W writers and R readers



Concurrent operations

● Operations take time, defined by two events 
at a process: invocation and completion

● Write(r, v)  ok→
– Writes value v to register instance r

● Read(r)  v→
– Reads from register instance r and returns value v

● Operation o precedes o' whenever completion 
of o occurs before invocation of o'

● Otherwise, o and o' are concurrent



Semantics of memory ops.

Safe: Every read not concurrent with a write returns the 
most recently written value.

Regular: Safe & any read concurrent with a write 
returns either the most recently written value or the 
concurrently written value: process s may read x or u.

Atomic: Regular & all read and write operations occur 
atomically ( = linearizable): process s must read u.

write(r,x)  ok→
p

q
read(r)  x→

s

write(r,u)  ok→

read(r)  u→

read(r)  u→ read(r) → ?



Linearizability

● Every operations appears to execute 
atomically at its linearization point
which lies in real time between the invocation 
and the completion 

write(r,x)  ok→
p

q
read(r)  x→

s

write(r,u)  ok→

read(r)  u→

read(r)  u→ read(r) → u



(1,N) Regular Register (onrr)

● Events
– Request <onrr, Read>

● Invokes a read operation on the register
– Request <onrr, Write | v>

● Invokes a write operation with value v
– Indication <onrr, ReadReturn | v>

● Completes a read operation, returning value v
– Indication <onrr, WriteReturn>

● Completes a write operation

● Properties
– ONRR1 (Liveness): If a correct process invokes an 

operation, then the operation eventually completes.
– ONRR1 (Validity): A read returns the last value 

written or the* value written concurrently.
*Only one process can possibly write.



Implementations of registers

● From other (simpler, unreliable) registers
– Multi-valued from binary registers
– (1,N) from (1,1) registers
– Regular registers from safe registers
– Atomic registers from regular registers
– ...

● From replicated (unreliable) processes
– Considered here
– Replica processes may fail

● Crash failures
● Byzantine failures



Client-server model

● Clients and servers are usually separate 
● For simplicity, we model them all as one 

group of N processes
– Processes have dual role as clients and servers

Communication abstraction

rN server
processes

p

c1

z

c1

q

Client
processes



Majority-Voting Reg. Register

Implements onrr, uses pl, beb (N > 2f)

(ts,val) := (0,); wts := 0; rid := 0

upon <onrr, Write | v> do
wts := wts + 1
acklist := []N
trigger <beb, Broadcast | [WRITE, wts, v]>

upon <beb, Deliver | p, [WRITE, ts', v']> do
if ts' > ts then

(ts, val) := (ts', v') 
trigger <pl, Send | p, [ACK, ts']>

upon <pl, Deliver | q, [ACK, wts]> do
acklist[q] := 1
if #(acklist) > N/2 then

trigger <onrr, WriteReturn>
...



Majority-Voting Reg. Register

...
upon <onrr, Read> do

rid := rid + 1
readlist := []N
trigger <beb, Broadcast | [READ, rid]>

upon <beb, Deliver | p, [READ, r]> do
trigger <pl, Send | p, [VALUE, r, ts, val]>

upon <pl, Deliver | q, [VALUE, rid, ts', v']> do
readlist[q] := (ts', v')
if #(readlist) > N/2 then

v := highestval(readlist) // value with highest ts
trigger <onrr, ReadReturn | v>

● Validity: every two operations access one 
common correct process



Registers in Byzantine model

● Up to f processes may be (Byzantine) faulty, 
including reader

● Writer process is always correct

● Specification of 
– (1,N) safe Byzantine register (bonsr) and 
– (1,N) regular Byzantine register (bonrr)

directly follows from (1,N) regular register



Implementations

● Algorithms must eliminate wrong values 
returned by Byzantine processes

● Two approaches for elimination
– Masking by sufficiently many correct values

→ Alg. "Masking Quorum" for Byzantine 
safe register

– Authentication of correct values with digital 
signatures

→ Alg. "Authenticated-Data" for Byzantine
regular register



Byzantine Masking Quorum

Implements bonsr, uses al, abeb (N > 4f), writer is w

(ts,val) := (0,); wts := 0; rid := 0 // Differences are in this color

upon <bonsr, Write | v> do
wts := wts + 1
acklist := []N
trigger <abeb, Broadcast | [WRITE, wts, v]>

upon <abeb, Deliver | w, [WRITE, ts', v']> do
if ts' > ts then

(ts, val) := (ts', v') 
trigger <al, Send | w, [ACK, ts']>

upon <al, Deliver | q, [ACK, wts]> do
acklist[q] := 1
if #(acklist) > (N+2f)/2 then

trigger <bonsr, WriteReturn>
...



Byzantine Masking Quorum
...
upon <bonsr, Read> do

rid := rid + 1
readlist := []N
trigger <abeb, Broadcast | [READ, rid]>

upon <abeb, Deliver | p, [READ, r]> do
trigger <al, Send | p, [VALUE, r, ts, val]>

upon <al, Deliver | q, [VALUE, rid, ts', v']> do
readlist[q] := (ts', v')
if #(readlist) > (N+2f)/2 then

v := byz-highestval(readlist) // filter and extract value
trigger <bonsrr, ReadReturn | v>

● byz-highestval()
– eliminates all values occurring f or fewer times
– returns survivor value with highest timestamp 

-- or -- special value  if no such value exists



Comments

● Alg. Byzantine Masking Quorum may return 
– Implements safe register on domain with { }

● Without concurrent write operation
– Last write op. has touched more than (N+2f)/2 pr.

● Among them, more than (N+2f)/2 - f are correct
● Less than (N-2f)/2 correct processes are untouched

– Read op. obtains value from more than (N+2f)/2 pr.
● Up to f may be from Byzantine pr.
● Less than (N-2f)/2 are from untouched correct pr.
● Strictly more than f are from correct pr. and contain last-

written timestamp/value pair



Auth.-Data Byzantine Quorum

Implements bonrr, uses al, abeb, signatures (N > 3f), writer is w

(ts,val, s) := (0, , ); wts := 0; rid := 0 // Differences are in this color

upon <bonrr, Write | v> do
wts := wts + 1; s := sign(w, WRITE||w||wts||v)
acklist := []N
trigger <abeb, Broadcast | [WRITE, wts, v, s]>

upon <abeb, Deliver | w, [WRITE, ts', v', s']> do
if ts' > ts then

(ts, val, s) := (ts', v', s') 
trigger <al, Send | w, [ACK, ts']>

upon <al, Deliver | q, [ACK, wts]> do
acklist[q] := 1
if #(acklist) > (N+f)/2 then

trigger <bonsr, WriteReturn>
...



Auth.-Data Byzantine Quorum

...
upon <bonrr, Read> do

rid := rid + 1
readlist := []N
trigger <abeb, Broadcast | [READ, rid]>

upon <abeb, Deliver | p, [READ, r]> do
trigger <al, Send | p, [VALUE, r, ts, val, s]>

upon <al, Deliver | q, [VALUE, rid, ts', v', s']> do
if verifysig(w, WRITE||w||ts'||v', s') then

readlist[q] := (ts', v')
if #(readlist) > (N+f)/2 then

v := highestval(readlist) // value with highest ts
trigger <bonrr, ReadReturn | v>



Comments

● Alg. Authenticated-Data Byz. Quorum uses
– Digital signatures issued by writer
– Byzantine quorums

● Otherwise, exactly the same as the Majority 
Quorum algorithm
– Signatures authenticate the value
– Signatures bind value to timestamp



Act III

Consensus



Consensus

● Processes propose values and have to agree 
on one decision value among the proposed 
values

● Consensus is a key abstraction for solving 
many other problems in fault-tolerant 
distributed systems
– Total-order broadcast
– Non-blocking atomic commit
– Replicated services
– ...



Uniform Consensus (uc)

● Events
– Request <uc, Propose | v>

● Proposes value v for consensus
– Indication <uc, Decide | v>

● Outputs a decided value v of consensus

● Properties
– UC1 (Termination): Every correct process 

eventually decides.
– UC2 (Validity): Any decided value has been 

proposed by some process.
– UC3 (Integrity): No process decides twice.
– UC4 (Uniform Agreement): No two processes* 

decide differently.

* whether correct or faulty



Weak Byzantine Consensus 
(wbc)
● Events

– Request <wbc, Propose | v>
● Proposes value v for consensus

– Indication <wbc, Decide | v>
● Outputs a decided value v of consensus

● Properties
– WBC1 (Termination) = UC1
– WBC2 (Weak Validity): Suppose all processes are 

correct: if all propose v, then a process may only 
decide v; if a process decides v, then v was 
proposed by some process.

– WBC3 (Integrity): No correct process decides twice.
– WBC4 (Agreement): No two correct processes 

decide differently.



Implementing consensus

● In asynchronous system with processes prone 
to crash and Byzantine failures, deterministic 
algorithms cannot implement consensus [FLP].

● We use a timing assumption, encapsulated as a 
leader detection oracle  
–   periodically designates a trusted leader
–   is not perfect, may make mistakes

● Variations of  can be implemented in partially 
synchronous systems
– With crash or Byzantine failures



Leader-driven consensus

● Most important paradigm for efficient imple-
mentations of consensus

● Introduced in
– Viewstamped replication [OL88]
– Paxos [L96]
– PBFT [CL02]

(these formulate it as total-order broadcast)

● Used in many cloud-serving platforms today

● Modular presentation of consensus algorithm 
in 3 steps



Leader-driven consensus

● Leader-driven consensus invokes
– One instance of Epoch-Change (invokes Omega)
– Multiple instances of Epoch Consensus

● Identified by the epoch number and a designated leader

Leader-driven consensus

Epoch-Change
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Preview - Step 1

● Define abstract primitives for
– Epoch-Change
– Epoch Consensus

● Abstractions are valid in both models

● Leader-driven algorithm for Uniform 
Consensus (crash faults) and Weak Byzantine 
Consensus (Byzantine faults) 
– Using Epoch-Change and Epoch Consensus 

abstractions



Preview - Step 2

● Instantiate primitives in model with crash 
failures
– According to Viewstamped Replication/Paxos

● Implement Epoch-Change

● Implement Epoch Consensus



Preview - Step 3

● Instantiate primitives in model with Byzantine 
failures
– According to PBFT

● Implement Epoch-Change

● Implement Epoch Consensus



Step 1

Implement consensus using 
leader-driven algorithm



Eventual Leader Detector ( )

● Events
– Indication < , Trust | p>

● Indicates that process p is trusted to be leader

● Properties
– ELD1 (Eventual accuracy): Eventually every correct 

process trusts some correct process.
– ELD2 (Eventual agreement): Eventually no two 

correct processes trust a different process.

● The trusted leader may change over time, 
different leaders may be elected, only 
eventually every process follows a "good" 
leader.



Epoch-Change (ec)

● Events
– Request <ec, StartEpoch | ts, L>

● Starts epoch (ts,L), timestamp ts and leader L

● Properties
– EC1 (Monotonicity): If a correct process starts epoch 

(ts,L) and later starts epoch (ts',L'), then ts' > ts.
– EC2 (Consistency): If a correct process starts epoch 

(ts,L) and another correct process starts epoch 
(ts,L'), then L = L'.

– EC3 (Eventual Leadership): Eventually every correct 
process starts no further epoch; moreover, every 
correct process starts the same last epoch (ts,L), 
where L is a correct process.



Epoch Consensus (ep)

● Associated with timestamp ts and leader L 
(globally known)

● Events
– Request <ep, Propose | v>

● Proposes v for epoch consensus (executed by leader only)
– Request <ep, Abort>

● Aborts this epoch consensus
– Indication <ep, Decide | v>

● Outputs decided value v for epoch consensus
– Indication <ep, Aborted | s>

● Signals that this epoch consensus has completed the abort 
and returns state s



Epoch Consensus (ep)

● Properties
– EP1 (Validity): If a correct process ep-decides v,

then v was proposed by the leader of some epoch 
consensus (ts',L) with ts' ≤ ts.

– EP2 (Uniform Agreement): No two [correct*] 
processes ep-decide differently.

– EP3 (Integrity): A correct process ep-decides at most 
once.

– EP4 (Lock-in): If a process ep-decides v in epoch ts' 
< ts, no process ep-decides a value different from v.

– EP5 (Termination): If the leader L is correct, has ep-
proposed a value and no process aborts, then every 
correct process eventually ep-decides.

(...) * for Byzantine epoch consensus



Epoch Consensus (ep)

● (...) Properties
– EP6 (Abort behavior): When a correct process 

aborts, then it eventually completes the abort; plus, 
a correct process completes an aborts only if it has 
been aborted before.

● Every process must run a well-formed 
sequence of epoch consensus instances:
– Only one instance of epoch consensus at a time
– Associated timestamps monotonically increasing
– Give state from previous (aborted) instance to next 

instance



Leader-driven consensus impl.

Implements c* (either uc or wbc), uses ec, ep (multiple instances)

val := ; proposed :=  FALSE; decided := FALSE
(ets,L) := (0,L0); (newts,newL) := (0, )
Init. Epoch Consensus inst. ep.0 with timestamp 0 and leader L0

upon <c*, Propose | v> do
val := v

upon <ec, StartEpoch | newts', newL'> do
(newts,newL) := (newts',newL')
trigger <ep.ets, Abort>

upon <ep.ets, Aborted | s> do
(ets,L) := (newts,newL)
proposed := FALSE
Init. Epoch Consensus inst. ep.ets with timestamp ets, leader L,

and state s



Leader-driven consensus impl.

(...)

upon L = self ∧ val ≠  ∧ ¬proposed do
proposed := TRUE
trigger <ep.ets, Propose | val>

upon <ep.ets, Decide | v> do
if ¬decided then

decided := TRUE
trigger <c*, Decide | v>



Ex.

● Every process (p, q, r, s) uc-proposes a value
● Epoch 6 has leader q

– q ep-proposes y, but only r receives it before epoch aborts
– r now has state (6,x)

● Epoch 8 has leader s
– s ep-proposes z, proc. p, q, s receive it
– only p ep-decides(z); then s crashes

● Epoch 11 has leader r, and ep-decides(z)



Correctness

● Termination (UC1 / WBC1)
– From EC3 (eventual leadership), EP5 (termination) 

and algorithm
● Validity (UC2) / Weak Validity (WBC2)

– From EP1 (validity) and algorithm
● Integrity (UC3)

– Immediate from algorithm
● Uniform Agreement (UC4 / WBC4)

– From algorithm and EP2 (agreement) and EP4 
(lock-in)



Step 2

Implement epoch-change and 
epoch consensus in crash-

failure model



Implementing epoch-change

● Use eventual leader detector ()

● Maintain current trusted leader and timestamp

● When  indicates a different leader is trusted
– Increment timestamp
– Broadcast a NEWEPOCH message (with leader and 

timestamp)

● When delivering a NEWEPOCH message
– Trigger start of new epoch

(Only a sketch; details omitted)



Implementing epoch consensus

● Read/write epoch consensus algorithm
– Analogous to replicated implementation of a shared 

single-writer register

● State consists of a timestamp/value pair

● Leader reads state and looks for a value
– Chooses value with highest timestamp
– If no value found, takes value from its ep-proposal
– Writes the chosen value

● Decide once a quorum of processes (> N/2) 
accept the written value



Read/write epoch consensus
Implements ep, uses pl, beb (N > 2f), with ts. ets and leader L

upon <ep, Init | (valts,val)> do
tmpval := ; states :=  [ ] N; accepted := 0

upon <ep, Propose | v> do
tmpval := v
trigger <beb, Broadcast | [READ]>

upon <beb, Deliver | L, [READ]> do
trigger <pl, Send | L, [STATE, valts, val]>

upon <pl, Deliver | q, [STATE, ts, v]> do
states[q] := (ts,v)

upon #(states) > N/2 do
(ts,v) := highest(states); states := [ ] N

if v ≠   then tmpval := v
trigger <beb, Broadcast | [WRITE, tmpval]>



Read/write epoch consensus

(...)

upon <beb, Deliver | L, [WRITE, v]> do
(valts,val) := (ets,v)
trigger <pl, Send | L, [ACCEPT]>

upon <pl, Deliver | q, [ACCEPT]> do
accepted := accepted + 1

upon accepted > N/2 do
accepted := 0
trigger <beb, Broadcast | [DECIDED, tmpval]>

upon <pl, Deliver | L, [DECIDED, v]> do
trigger <ep, Decide | v>

upon <ep, Abort> do
trigger <ep, Aborted | (valts,val)>



Correctness (1)

● Validity (EP1)
– The ep-decided value was written by L
– If any STATE msg. contains a value, L writes this

● This value has been written by some leader
– Otherwise, L writes its own ep-proposed value

● Uniform Agreement (EP2)
– Immediate from DECIDED msg. in algorithm

● Integrity (EP3)
– Immediate from algorithm

● Lock-in (EP4)
– A write-quorum (> N/2) stored v before sending 

the ACCEPT msg. in previous epoch ts' < ts
– Processes passed it in state to subsequent epochs
– Then, L reads v from at least one STATE msg. in 

read-quorum (> N/2) 



Correctness (2)

● Termination (EP5)
– If leader L is correct, then every process ep-

decides
● Abort behavior (EP6)

– Immediate from algorithm



Step 3

Implement epoch-change and 
epoch consensus in Byzantine-

failure model



Implementing Byzantine 
epoch-change
● Use Byzantine eventual leader detector (bld)

– bld allows application to complain when no progress

● Maintain current trusted leader and timestamp

● When bld indicates a different leader is trusted
– Increment timestamp
– Derive leader from timestamp (deterministically)
– Broadcast a NEWEPOCH message (with timestamp)

● When delivering > f NEWEPOCH messages
– Trigger start of new epoch

(Only a sketch; details omitted)



Implementing Byzantine epoch 
consensus (1)
● Byzantine read/write epoch consensus alg.

– Analogous to replicated implementation of a Byz. 
shared single-writer register

● State consists of timestamp/value pair and set 
of "previously" written values

● Leader should read state of all processes and 
determine value to write
– But cannot trust single leader
– Thus, all processes read state and determine value

● Encapsulated by a conditional collect primitive

(...)



Implementing Byzantine epoch 
consensus (2)

● Processes choose value with highest timestamp
– If no value found, only then leader is free to take the 

value from its ep-proposal

● All processes write the chosen value
– Broadcast WRITE message to all

● When receiving WRITE msg. with value v from
> (N+f)/2 processes, then store v
– Broadcast ACCEPT msg. message to all

● When receiving ACCEPT msg. with v from
> (N+f)/2 processes, then ep-decide



Conditional Collect (cc)
● Parameterized by a predicate C and leader L

– Leader L will also be the leader of the epoch

● Events
– Request <cc, Input | m>

● Inputs message m
– Indication <cc, Collected | M>

● Outputs vector M of collected messages or UNDEFINED

● Properties
– CC1 (Consistency): If L is correct, every correct pr. 

collects the same M, which contains at least N-f 
messages different from UNDEFINED.

– CC2 (Integrity): If a correct pr. collects M with M[p] 
≠ UNDEFINED and p is correct, then p has input m.
(...)



Conditional Collect (cc)
● (... Properties)

– CC3 (Termination): If L is correct and all correct pr. 
input messages such that they satisfy C, then every 
correct process eventually collects M s.t. C(M).

● Note
– Every process inputs a message
– Output is vector of such messages, one per process
– If L correct, then output M satisfies the predicate

● Otherwise, may not terminate



Byz. read/write epoch cons. (1)
Implements ep, uses al, abeb, cc (N > 3f), with ts. ets and leader L

upon <ep, Init | (valts,val,ws)> do
written := [ ] N; accepted := [ ] N

upon <ep, Propose | v> do
if val =   then val := v
trigger <abeb, Broadcast | [READ]>

upon <abeb, Deliver | L, [READ]> do
trigger <cc, Input | [STATE, valts, val, ws]>

upon <cc, Collected | S> do
// note, for all p : S[p] = [STATE, ts, v, ws] or UNDEFINED
tmpval := 
if ∃ts ≥ 0, v ≠  from S :  binds(ts,v,S) then tmpval := v
else if ∃v ≠  :  unbound(S) ∧ v ∈ S[L] then tmpval := v
if tmpval =   then halt
(...)



Byz. read/write epoch cons. (2)

(... upon <cc, Collected | S> do)
if ∃ts : (ts,tmpval)  ∈ ws then ws := ws ∖ {(ts,tmpval)}
ws := ws ∪ {(ets,tmpval)}
trigger <abeb, Broadcast | [WRITE, tmpval]>

upon <abeb, Deliver | p, [WRITE, v]> do
written[p] := v
if v ∃ : #{p|written[p]=v} > (N+f)/2 then

(valts,val) := (ets,v)
written := [ ] N

trigger <abeb, Broadcast | [ACCEPT, val]>

upon <abeb, Deliver | q, [ACCEPT, v]> do
accepted[p] := v
if v ∃ : #{p|accepted[p]=v} > (N+f)/2 then

written := [ ] N

trigger <ep, Decide | v>



Byz. read/write epoch cons. (3)

● Predicate binds(ts,v,S):
– Whether (ts,v) is confirmed by > (N+f)/2 entries in 

S to be value associated to highest timestamp,
and

– Value v has not been invented out of thin air
● Hence, processes write this value again

● Predicate unbound(S):
– Evidence that no value can be bound by S 

● Hence, processes write value of the leader

● Predicate sound(S) for cc:
– ∃(ts,v) such that binds(ts,v,S) ∨ unbound(S)



Correctness (1)
● Validity (EP1)

– The ep-decided value v was written in the epoch
– Either collected vector S satisfies bound(ts,v,S)

● Then v has been written in an "earlier" epoch
– Otherwise, take ep-proposed value of L 

● Uniform Agreement (EP2)
– Immediate from quorum of ACCEPT msgs.

● Integrity (EP3)
– Immediate from algorithm

● Lock-in (EP4)
– A write-quorum (> (N+f)/2) stored v before 

sending an ACCEPT msg. in previous epoch ts' < ts
– Processes passed it in state to subsequent epochs
– Then, conditional collect determines from STATE 

msgs. in a quorum (> (N+f)/2) that such v exists



Correctness (2)
● Termination (EP5)

– If leader L is correct, then every process ep-
decides

● Given termination of conditional collect (CC3)
● Same as termination of Byz. reliable broadcast

● Abort behavior (EP6)
– Immediate from algorithm (omitted)



Summary

● Same leader-driven consensus algorithm with 
crash failures and Byzantine failures
– Using abstract primitives of epoch-change and 

epoch consensus

● Primitives implemented in crash model
– Paxos consensus algorithm

● Primitives implemented in Byzantine model
– PBFT consensus algorithm



Coda



Wrap-up

● Distributed programming defines abstractions 
of
– Reliable broadcast
– Shared memory
– Consensus

● Implementations in distributed systems

● By group of processes, which are subject to
– Crash failures
– Attacks/Byzantine failures



For everything else, see the 
book.

www.distributedprogramming.net
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